
Patchman	platform	integration

Introductory	notes	about	platform	integration

Patchman	needs	to	interface	with	your	webservers	for	a	couple	of	reasons:

Determining	which	directories	need	scanning

Determining	which	users	own	which	directories,	and	which	of	those	directories	belong	to	which	websites

Finding	out	the	user	hierarchy

Retrieving	contact	details	for	the	users

For	several	popular	platform	software	packages	(i.e.	cPanel,	DirectAdmin	and	Plesk)	the	integration	ships	built-in	with

the	Patchman	software	and	requires	no	configuration.	If	you	are	using	one	of	these	software	packages,	Patchman	will

automatically	detect	which	of	these	packages	is	active	and	will	automatically	activate	the	required	integration

method.

If	you	do	not	use	one	of	these	software	packages,	you	can	provide	Patchman	with	the	required	data	yourself.	This

document	discusses	how	to	configure	the	software	to	use	such	a	custom	platform	integration	method.

Compatibility

This	document	specifies	the	custom	integration	API	compatible	with	Patchman	versions	1.7.1	and	up.

Document	revisions

19	October	2021:	Add	clarification	for	UTF-8	requirement	for	string	data

26	February	2021:	Correct	erroneous	information	about	expected	script	exit	status

17	May	2019:	Added	explanation	for	single	sign-on	functionality	through	IPC

23	April	2019:	Clarified	user	hierarchies

23	November	2016:	Scrapped		children		field	from	file/script	type	1

26	June	2015:	Initial	version

file:///home/jelmer.verkleij/CLionProjects/patchman2-client/doc/.tmp.html#patchman-platform-integration
file:///home/jelmer.verkleij/CLionProjects/patchman2-client/doc/.tmp.html#introductory-notes-about-platform-integration
file:///home/jelmer.verkleij/CLionProjects/patchman2-client/doc/.tmp.html#compatibility
file:///home/jelmer.verkleij/CLionProjects/patchman2-client/doc/.tmp.html#document-revisions

Supplying	user	and	directory	metadata

This	chapter	discusses	the	different	options	for	providing	the	Patchman	software	with	the	required	metadata	for	users

and	directories	on	your	system.	Patchman	supports	two	approaches	for	this:

1.	 Provide	scripts	on	the	webservers	that	can	be	called	by	the	agent,	returning	data	in	the	output

2.	 Provide	pre-generated	JSON	files	on	the	webservers	containing	data	that	can	be	read	by	the	agent

In	both	cases,	the	data	needs	to	be	presented	in	a	JSON	format	specified	below.

For	all	descriptions	of	files	and	scripts,	examples	are	provided	for	reference.

General	notes	about	JSON

Both	approaches	make	use	of	JSON	serialization	of	data.	When	building	JSON	output,	take	into	account	that	JSON	is

strongly	typed.	It	distinguishes	between	the	following	types:

Strings	(only	UTF-8	characters	are	supported)

			"data"
			""

Integers

			42
			0
			-12

Booleans

			true
			false

Objects	(similar	to	dictionaries,	maps	or	associative	arrays	as	used	in	other	serialization	methods	and

programming	languages)

			{}
			{"key":	"value",	"key	with	differently	typed	value":	42}

Lists	(similar	to	non-associative	arrays	or	vectors	as	used	in	other	serialization	methods	and	programming

languages)

			[]
			["single	entry"]
			[1,2,3]

Null	values	(not	to	be	confused	with	empty	values	such	as	empty	strings,	empty	lists	or	the	integer	0)

			null

None	of	the	object	entries	in	this	specification	are	optional:	each	key	in	the	main	object	must	always	be	present.

However,	occasionally	an	empty	value	(e.g.		""	,		[]		or		{})	or	null	value	(null)	is	allowed.	Pay	close	attention	to
the	documentation	to	find	out	which	field	allows	which	values.

file:///home/jelmer.verkleij/CLionProjects/patchman2-client/doc/.tmp.html#supplying-user-and-directory-metadata
file:///home/jelmer.verkleij/CLionProjects/patchman2-client/doc/.tmp.html#general-notes-about-json

User	hierarchies

Patchman	is	built	to	be	compatible	with	hierarchies	of	users	in	your	control	panel.	This	structure	is	relevant	for	your

policy	configuration	regarding	notifications,	and	also	decides	what	data	is	available	to	your	users	through	the	SSO

interface.	Consider	the	following	example:

admin_user_1	(level	1)
	└	reseller_user_1	(level	2)
	└	reseller_user_2	(level	2)
				└	end_user_1	(level	3)
	└	end_user_2	(level	3)
admin_user_2	(level	1)
	└	reseller_user_3	(level	2)
				└	end_user_3	(level	3)

When	a	notification	needs	to	be	sent,	depending	on	the	policy	configuration,	this	notification	will	be	sent	to	different

users.	The	table	below	describes	which	user	receives	the	notification,	given	a	notification	concerning	the	user	in	the

row	title	and	the	"Notified	user	level"	policy	setting	in	the	column	header:

...to	the

administrator

...to	the

reseller

...to	the

affected	user

...to	the	descendant	of

administrator

admin_user_1 admin_user_1 admin_user_1 admin_user_1 admin_user_1

reseller_user_1 admin_user_1 admin_user_1 reseller_user_1 reseller_user_1

reseller_user_2 admin_user_1 admin_user_1 reseller_user_2 reseller_user_2

end_user_1 admin_user_1 reseller_user_2 end_user_1 reseller_user_2

end_user_2 admin_user_1 admin_user_1 end_user_2 end_user_2

admin_user_2 admin_user_2 admin_user_2 admin_user_2 admin_user_2

reseller_user_3 admin_user_2 admin_user_2 reseller_user_3 reseller_user_3

end_user_3 admin_user_2 reseller_user_3 end_user_3 reseller_user_3

Regarding	data	access,	consider	that	each	reseller	user	will	also	have	access	to	data	for	all	users	below	it	in	the

hierarchy.	For	example,		reseller_user_2		also	has	access	to	data	belonging	to		end_user_1		and		admin_user_2		can
access	both		reseller_user_3		and		end_user_3	.	Note	that	despite	being	a	reseller,		reseller_user_1		won't	have
access	to	any	data	owned	by	another	user	simply	because	it	isn't	the	parent	of	any	user.

Configuration	of	user	hierarchies	depends	on	two	values	you	can	set.	It	is	very	important	that	you	set	both	of	these

fields	correctly	for	both	notifications	and	SSO	access	to	work	properly.	For	the	exact	list	of	supported	values,	refer	to

the	documentation	for	your	chosen	type	of	integration,	later	in	this	document.

The		parent		field,	describing	which	is	the	parent	user	(e.g.		admin_user_1		for		reseller_user_1	,	and		null		for
	admin_user_1)

The		level		field,	describing	the	type	of	user	(e.g.		1		for		admin_user_1)

file:///home/jelmer.verkleij/CLionProjects/patchman2-client/doc/.tmp.html#user-hierarchies

Approach	1:	Scripts

The	scripts	will	be	executed	by	their	owning	users	through	a	shell	(so	shebangs	are	supported).	All	scripts	should

return	valid	JSON	data	and	an	exit	status	of	0	on	success,	and	must	return	a	nonzero	exit	status	on	error.	In	case	the

exit	status	is	zero,	standard	error	output	is	ignored;	otherwise,	both	standard	output	and	standard	error	output	are

captured	for	logging	purposes.

User	metadata

Script	1	is	used	for	getting	user	metadata,	and	is	called	whenever	a	user	is	added	or	modified.	In	case	audit	logging	is

enabled	within	Patchman	and	the	logging	is	sent	to	to	a	home	directory	path,	it	may	be	called	upon	file	action

execution	as	well.	The	result	is	an	object	and	should	only	contain	elements	for	matching	arguments.	All	keys	for	each

object	entry	are	required	at	all	times,	but	some	values	may	be	null.	If	a	domain	does	not	have	any	directories,	it

should	be	omitted.

#	./get_user_data.sh	username1	userthatdoesnotexist
{	
		"username1":	{
				"homedir":	"/home/username1/",
				"email":	"address@domain.com",
				"parent":	"parent_username",
				"language":	"en",
				"suspended":	false,
				"level":	3,
				"domains":	{
						"domain.com":	[
								"/home/username1/domains/domain.com/public_html/",
								"/home/username1/domains/domain.com/private_html/"
]
				}
		}
}

Notes:

The	homedir	field	is	used	when	enabling	per-customer	audit	logging	in	the	Portal,	which	places	the	logfile	in	a

location	relative	to	the	appropriate	homedir.

The	email	field	may	contain	multiple	e-mail	addresses,	comma-separated.	If	no	e-mail	address	should	be	used,

supply	an	empty	string.

The	parent	field	supports	null	values.

The	language	field	supports	ISO	639-1	language	codes.	If	you	have	no	applicable	language,	please	supply	a

sensible	default.

The	level	is	used	for	specifying	the	user	type	or	'rank'	in	an	internal	hierarchy.	A	lower	level	means	a	higher

'rank'.	A	common	practice	is	using	1	for	admin	or	root,	2	for	resellers	and	3	for	normal	users.

If	a	domain	does	not	have	any	directories,	it	should	be	omitted	from	the	list	of	domains.

If	a	user	does	not	have	any	domains,	the	domains	entry	should	be	an	empty	object.

If	the	domain	is	internationalized	(IDN),	it	is	recommended	to	use	punycode	notation.

file:///home/jelmer.verkleij/CLionProjects/patchman2-client/doc/.tmp.html#approach-1-scripts
file:///home/jelmer.verkleij/CLionProjects/patchman2-client/doc/.tmp.html#user-metadata

Path	information

Script	2	is	used	for	getting	path	information.	The	result	is	an	object	and	should	only	contain	elements	for	matching

arguments.	All	keys	for	each	object	entry	are	required	at	all	times.	If	the	script	is	called	without	arguments,	it	should

return	elements	for	all	existing	paths	that	Patchman	should	index.

Patchman	will	only	scan	a	path	when	it	is	an	actual	directory;	any	symbolic	links	will	be	ignored.	The	number	of

symbolic	links	that	has	been	ignored	will	be	displayed	in	the	log	files.

#	./get_path_info.sh	/home/username/domains/domain.com/public_html/subpath	\
																					/path/that/does/not/exist
{
		"/home/username/domains/domain.com/public_html/subpath":	{
				"username":	"username1",
				"domain":	"domain.com"
		}
}

Notes:

If	the	domain	is	internationalized	(IDN),	it	is	recommended	to	use	punycode	notation.

Modified	users

Script	3	is	used	for	getting	the	list	of	users	with	modified	metadata	since	a	given	UNIX	epoch	timestamp	(GMT).	It	is

called	every	five	minutes	by	default,	but	does	have	a	configurable	interval.	Its	result	is	a	list	that	contains	usernames

of	the	users	whose	metadata	(e-mail	address,	language,	suspended,	level	or	domains)	has	changed	since	the	given

time.	In	case	no	users	have	changed,	the	result	should	be	an	empty	list	([]).

#	./get_changed_users.sh	1234567890
[
		"username1"
]

file:///home/jelmer.verkleij/CLionProjects/patchman2-client/doc/.tmp.html#path-information
file:///home/jelmer.verkleij/CLionProjects/patchman2-client/doc/.tmp.html#modified-users

Approach	2:	Files

Instead	of	scripts,	you	can	also	opt	for	generating	files	with	metadata	manually	from	your	own	control	panel	in

predefined	locations,	which	Patchman	will	read	whenever	it	requires	the	data.	This	is	a	good	option	if	you	don't	have

an	easily	accessible	API,	or	if	API	calls	prove	relatively	expensive.	You	can	generate	these	files	periodically	through

e.g.	cron	jobs.	Note	that	file	changes	should	always	occur	atomically	to	prevent	Patchman	from	reading	intermediate

states,	so	you	should	never	change	the	file	in-place	(but	e.g.	use	a	temporary	file	for	writing,	which	is	moved	over	the

original	file	on	completion).

User	metadata

File	type	1	is	used	for	getting	user	metadata.	There	should	be	one	file	per	existing	user,	with	one	JSON	object	per	file.

#	cat	username1.json
{	
		"username1":	{
				"homedir":	"/home/username1/",
				"email":	"address@domain.com",
				"parent":	"parent_username",
				"language":	"en",
				"suspended":	false,
				"level":	3,
				"domains":	{
						"domain.com":	[
								"/home/username1/domains/domain.com/public_html/",	
								"/home/username1/domains/domain.com/private_html/"
]
				}
		}
}

Notes:

The	homedir	field	is	used	when	enabling	per-customer	audit	logging	in	the	Portal,	which	places	the	logfile	in	a

location	relative	to	the	appropriate	homedir.

The	email	field	may	contain	multiple	e-mail	addresses,	comma-separated.	If	no	e-mail	address	should	be	used,

supply	an	empty	string.

The	parent	field	supports	null	values.

The	language	field	supports	ISO	639-1	language	codes.	If	you	have	no	applicable	language,	please	supply	a

sensible	default.

The	level	is	used	for	specifying	the	user	type	or	'rank'	in	an	internal	hierarchy.	A	lower	level	means	a	higher

'rank'.	A	common	practice	is	using	1	for	admin	or	root,	2	for	resellers	and	3	for	normal	users.

If	a	domain	does	not	have	any	directories,	it	should	be	omitted	from	the	list	of	domains.

If	a	user	does	not	have	any	domains,	the	domains	entry	should	be	an	empty	object.

If	the	domain	is	internationalized	(IDN),	it	is	recommended	to	use	punycode	notation.

file:///home/jelmer.verkleij/CLionProjects/patchman2-client/doc/.tmp.html#approach-2-files
file:///home/jelmer.verkleij/CLionProjects/patchman2-client/doc/.tmp.html#user-metadata-1

Path	information

File	type	2	is	used	for	getting	path	information.	There	should	be	one	file	with	one	JSON	object,	containing	a	mapping

of	paths	to	username	and	domain.	All	keys	for	each	object	entry	are	required	at	all	times.

Patchman	will	only	scan	a	path	when	it	is	an	actual	directory;	any	symbolic	links	will	be	ignored.	The	number	of

symbolic	links	that	has	been	ignored	will	be	displayed	in	the	log	files.

#	cat	domains.json
{
		"/home/username/domains/domain.com/public_html/":	{
				"username":	"username1",
				"domain":	"domain.com"
		},
		"/home/username/domains/domain.com/private_html/":	{
				"username":	"username1",
				"domain":	"domain.com"
		}
}

Notes:

If	the	domain	is	internationalized	(IDN),	it	is	recommended	to	use	punycode	notation.

Modified	users

File	type	3	is	used	for	getting	the	list	of	users	with	modified	metadata	since	a	given	UNIX	epoch	timestamp	(GMT).	It

should	contain	one	JSON	object	with	a	mapping	of	username	to	UNIX	timestamp	that	marks	the	last	moment	that

user's	metadata	(e-mail	address,	language,	suspended,	level	or	domains)	was	changed.	In	case	no	users	are	present

yet,	the	result	should	be	an	empty	object	({}).

#	cat	userchanges.json
{
		"username1":	1234567890
}

file:///home/jelmer.verkleij/CLionProjects/patchman2-client/doc/.tmp.html#path-information-1
file:///home/jelmer.verkleij/CLionProjects/patchman2-client/doc/.tmp.html#modified-users-1

Enabling	custom	integration

Within	the	Patchman	Portal,	custom	integration	is	enabled	per	server	group.	Make	sure	the	files	or	scripts	are	locally

available	on	each	server	within	the	server	group	you	enable	this	for.

After	the	use	of	custom	integration	has	been	enabled	for	your	account,	you	can	follow	these	steps	for	configuration:

1.	 Go	to	Servers	->	Server	Groups

2.	 Open	the	page	for	the	appropriate	group

3.	 Under	Platform,	select	the	applicable	option	(script-based	or	file-based	integration)

4.	 Fill	out	the	three	input	fields	asking	for	the	fully	qualified	paths	to	the	scripts	or	files

5.	 Click	Update	to	save	the	changes

After	the	configuration	has	been	updated,	it	may	take	several	minutes	before	the	first	synchronization	of	the

directory	tracking	index	on	each	server	is	started.	Keep	an	eye	on	the	logfiles	in	/var/log/patchman/	for	information

on	whether	the	task	has	started	yet,	and	to	see	if	the	integration	could	be	used	without	error.

file:///home/jelmer.verkleij/CLionProjects/patchman2-client/doc/.tmp.html#enabling-custom-integration

Creating	Patchman	Portal	single	sign-on	buttons	for	end	users

You	can	create	buttons	for	your	customers	to	log	on	to	a	subsection	of	the	Portal,	giving	them	access	to	detections

for	their	account	only.	Think	of	this	as	the	user-level	detections	view	in	the	Portal,	without	the	left	sidebar.	You	have

some	control	over	what	end	users	can	do	in	this	view	through	the	policy	configuration.	The	policy	also	defines	which

users	have	access	to	this	end-user	view	(through	the	settings	"Enable	login	for	end	users").

Which	users	to	show	the	button	for

On	the	webhosting	servers	where	Patchman	is	installed,	a	list	of	users	that	currently	have	access	to	the	Portal	can	be

found	in	the	file	/var/lib/patchman/plugin.	Each	line	in	this	file	is	an	entry	specifying	a	username	and	user	level	for

which	the	Portal	is	available	to	them.	Consider	the	following	example	file:

john,user
peter,user
peter,reseller

In	this	case,	both	the	users	john	and	peter	have	access	to	the	Portal	dashboard	on	a	user	level.	However,	since	peter

is	also	a	reseller,	he	has	access	to	the	reseller	level	as	well.	This	level	in	the	Portal	gives	an	overview	of	the	users

controlled	by	his	reseller	user	in	your	panel,	and	thus	allows	that	reseller	to	access	detection	data	for	those

underlying	users.	Depending	on	the	layout	of	your	panel,	you	can	opt	to	show	each	button	in	the	appropriate	location

(e.g.	if	a	reseller	has	a	separate	user-level	view	as	well	as	the	reseller-level	view),	or	to	only	show	the	topmost	level

(i.e.	the	user	button	for	john	and	the	reseller	button	for	peter).

Currently	only	the	user	and	reseller	levels	are	supported.

Generating	the	single	sign-on	link

You	will	need	to	generate	and	retrieve	a	single	sign-on	link	through	the	Agent	IPC	interface.	In	order	to	do	so,	send	a

JSON-formatted	request	to	the	UNIX	datagram	socket	located	at		/var/run/patchman-sso.sock	.	The	request	should
contain:

A	"username"	field	(required)	with	username	as	reported	by	your	integration.

A	"next"	field	(optional)	with	the	location	the	end	user	will	be	redirected	to	after	login.	For	example,	you	can	set

this	to		/detections/reseller/		for	reseller	users	to	forward	them	to	the	appropriate	part	of	the	Portal	interface
right	away.

The	following	is	an	example	of	a	valid	request:

{
		"username":	"peter",
		"next":	"/detections/reseller/"
}

The	agent	will	reply	with	a	JSON	response	containing	a	single	sign-on	URL	in	the	'redirect_to'	field:

{
		"username":	"peter",
		"redirect_to":	"https://portal.patchman.co/t/login/token12345/"
}

Redirect	the	user	to	the	URL	to	sign	them	in	to	the	Portal.	If	an	error	occurred,	the	response	will	not	include	a

	redirect_to		field	but	may	instead	contain	a		detail	,		username		or		next		field	describing	the	error.

Reference	implementations	are	included	below	in	PHP	and	Python.

file:///home/jelmer.verkleij/CLionProjects/patchman2-client/doc/.tmp.html#creating-patchman-portal-single-sign-on-buttons-for-end-users
file:///home/jelmer.verkleij/CLionProjects/patchman2-client/doc/.tmp.html#which-users-to-show-the-button-for
file:///home/jelmer.verkleij/CLionProjects/patchman2-client/doc/.tmp.html#generating-the-single-sign-on-link

PHP

#!/usr/bin/env	php
<?php
$fields	=	array('username'	=>	$username);

//	In	case	user	is	a	reseller:
//	$fields	=	array('username'	=>	$username,	'next'	=>	'/detections/reseller/');

$request_json	=	json_encode($fields);
$response_json	=	'';

//	Default	location	of	the	SSO	socket.	Can	be	changed.
$their_path	=	'/var/run/patchman-sso.sock';

//	Creates	a	random	name	for	our	socket.
$our_path	=	tempnam('/tmp',	'patchman');
unlink($our_path);

$socket	=	socket_create(AF_UNIX,	SOCK_DGRAM,	0);

socket_bind($socket,	$our_path);
socket_sendto($socket,	$request_json,	strlen($request_json),	0,	$their_path);
socket_recvfrom($socket,	$response_json,	8096,	0,	$their_path);

$data	=	json_decode($response_json);

if	(isset($data->redirect_to))	{
				//	Success	-	redirect	user	to	the	retrieved	single	sign-on	link.
				header('Location:	'	.	$data->redirect_to);
}	else	if	($data	!==	NULL)	{
				//	An	error	occurred.	Perhaps	a	username	was	supplied	that	the	Portal	has	no	record	of,	or	the	user	does
				//	not	have	access	to	the	Portal,	in	which	case	it	is	likely	that	this	user	also	doesn't	appear	in	the
				//	/var/lib/patchman/plugin	file,	and	the	button	should	not	be	available	to	them.	You	may	want	to	log	or
				//	inspect	$data	for	more	details.
}	else	{
				//	Unknown	error,	inspect	$response_json	for	more	information.
}

file:///home/jelmer.verkleij/CLionProjects/patchman2-client/doc/.tmp.html#php

Python

#!/usr/bin/env	python
import	json
import	os
import	socket
import	tempfile

with	tempfile.NamedTemporaryFile()	as	our_path:
				os.remove(our_path.name)

				sock	=	socket.socket(socket.AF_UNIX,	socket.SOCK_DGRAM,	0)
				sock.bind(our_path.name)

				request	=	{'username':	...,	'next':	...}
				request_json	=	json.dumps(request).encode('utf-8')
				sock.sendto(request_json,	'/var/run/patchman-sso.sock')

				reply_json	=	sock.recv(8096)

				try:
								reply	=	json.loads(reply_json.decode('utf-8'))

								if	'redirect_to'	in	reply:
												#	Success	-	redirect	user	to	the	retrieved	single	sign-on	link.
												print('HTTP/1.1	302	Found\r')
												print('Location:	{}\r\n\r'.format(reply['redirect_to']))
								else:
												#	An	error	occurred.	Perhaps	a	username	was	supplied	that	the	Portal	has	no	record	of,	or
												#	the	user	does	not	have	access	to	the	Portal,	in	which	case	it	is	likely	that	this	user
												#	also	doesn't	appear	in	the	/var/lib/patchman/plugin	file,	and	the	button	should	not	be
												#	available	to	them.	You	may	want	to	log	or	inspect	the	reply	for	more	details.
												...
				except	json.JSONDecodeError:
								#	Unknown	error,	inspect	reply_json	for	more	information.
								...

				sock.close()

file:///home/jelmer.verkleij/CLionProjects/patchman2-client/doc/.tmp.html#python

Legacy

An	alternative	approach,	which	communicates	with	the	Portal	API	directly	using	Patchman	license	certificate	files,	is

included	below	as	a	reference	for	existing	implementations.	This	approach	is	legacy	and	deprecated,	and	using	it	for

new	implementations	is	highly	discouraged.	The	API	documentation	for	this	particular	call	can	be	found	at

https://portal.patchman.co/api/#token.

PHP

#!/usr/bin/env	php
<?php
$c	=	curl_init();

//	Supply	the	username
$username	=	'root';

//	Initialize	the	curl	call
curl_setopt($c,	CURLOPT_URL,	"https://client-portal.patchman.co/api/v1/token/");
curl_setopt($c,	CURLOPT_SSLCERT,	"/etc/patchman/license/patchman.crt");
curl_setopt($c,	CURLOPT_SSLKEY,	"/etc/patchman/license/patchman.key");
curl_setopt($c,	CURLOPT_RETURNTRANSFER,	1);

//	This	code	tells	the	single	sign-on	link	to	redirect	to	the	reseller	view.	If	you	want
//	to	stick	to	the	user-level	view,	simply	remove	the	"next"	field	from	the	call	below.
curl_setopt($c,	CURLOPT_POSTFIELDS,	array("username"	=>	$username,
																																										"next"	=>	"/detections/reseller/"));

//	This	code	ensures	the	curl	call	uses	the	external	interface	that	Patchman's	license	
//	was	generated	for.	If	you	don't	do	this,	on	multi-interface	systems,	this	may	result
//	in	an	IP	mismatch	and	connection	refusal	on	the	Portal	side.
if	(function_exists('openssl_x509_parse'))	{
				//	False	warnings	from	https://bugs.php.net/bug.php?id=66636	will	interfere	with
				//	headers,	so	silence	the	output
				$cert	=	file_get_contents('/etc/patchman/license/patchman.crt');
				$certificate_info	=	@openssl_x509_parse($cert);

				if	($certificate_info)	{
								curl_setopt($c,	CURLOPT_INTERFACE,	$certificate_info['subject']['CN']);
				}
}

$version	=	curl_version();

//	Workaround	for	an	NSS	bug:	https://bugzilla.redhat.com/show_bug.cgi?id=733794
if	(strpos($version['ssl_version'],"NSS/")	===	0)	{
				curl_setopt($c,	CURLOPT_CAINFO,	"/etc/patchman/license/patchman.crt");

				if	(file_exists("/etc/pki/tls/"))	{
								curl_setopt($c,	CURLOPT_CAPATH,	"/etc/pki/tls/");
				}	else	{
								curl_setopt($c,	CURLOPT_CAPATH,	"/etc/ssl/certs/");
				}
}

//	Perform	the	call	and	decode	the	response	as	JSON
$data	=	json_decode(curl_exec($c));

curl_close($c);

if	($data->redirect_to)	{
				//	Success	-	redirect	user	to	the	retrieved	single	sign-on	link.
				header("Location:	".$data->redirect_to);
}	else	if	($data->username	==	"This	user	does	not	exist.")	{
				//	You	supplied	a	username	that	the	Portal	has	no	record	of.
}	else	if	($data->username	==	"This	user	can't	access	the	portal.")	{
				//	This	user	does	not	have	access	to	the	Portal.	Most	likely	this	user	also	doesn't
				//	appear	in	the	/var/lib/patchman/plugin	file,	and	the	button	should	not	be	available
				//	to	them.

file:///home/jelmer.verkleij/CLionProjects/patchman2-client/doc/.tmp.html#legacy
file:///home/jelmer.verkleij/CLionProjects/patchman2-client/doc/.tmp.html#php-1
https://portal.patchman.co/api/#token

}	else	{
				//	Unknown	error,	inspect	$data	for	more	information.
}

Python

#!/usr/bin/env	python
import	socket
from	cryptography	import	x509
from	cryptography.hazmat.backends	import	default_backend
from	cryptography.x509.oid	import	ObjectIdentifier

#	Supply	the	username
username	=	"root"

#	This	code	ensures	the	curl	call	uses	the	external	interface	that	Patchman's	license	
#	was	generated	for.	If	you	don't	do	this,	on	multi-interface	systems,	this	may	result
#	in	an	IP	mismatch	and	connection	refusal	on	the	Portal	side.

#	Retrieve	the	license	certificate	IP
with	open('/etc/patchman/license/patchman.crt',	'r')	as	fd:
				cert	=	x509.load_pem_x509_certificate(fd.read(),	default_backend())

ip_address	=	cert.subject.get_attributes_for_oid(ObjectIdentifier('2.5.4.3'))[0].value

#	Monkey-patch	socket.socket	to	support	binding	source	IP
unbound_socket	=	socket.socket

class	bound_socket(unbound_socket):
				def	connect(self,	*args,	**kwargs):
								if	self.family	==	socket.AF_INET:
												self.bind((ip_address,	0))
								unbound_socket.connect(self,	*args,	**kwargs)

socket.socket	=	bound_socket

#	Import	requests	after	monkey-patching	to	ensure	this	patched	socket	is	used
import	requests

#	This	code	tells	the	single	sign-on	link	to	redirect	to	the	reseller	view.	If	you	want
#	to	stick	to	the	user-level	view,	simply	remove	the	"next"	field	from	the	call	below.
r	=	requests.post("https://client-portal.patchman.co/api/v1/token/",
																		data={"username":	username,
																								"next":	"/detections/reseller/"},
																		cert=("/etc/patchman/license/patchman.crt",
																								"/etc/patchman/license/patchman.key"))

#	Parse	the	response	body	as	JSON
result	=	r.json()

if	'redirect_to'	in	result:
				#	Success	-	redirect	user	to	the	retrieved	single	sign-on	link.
				print("HTTP/1.1	302	Found\n")
				print("Location:	{url}\n\n".format(url=result['redirect_to']))
elif	'username'	in	result:
				if	result['username']	==	"This	user	does	not	exist.":
								#	You	supplied	a	username	that	the	Portal	has	no	record	of.
								pass
				elif	result['username']	==	"This	user	can't	access	the	portal.":
								#	This	user	does	not	have	access	to	the	Portal.	Most	likely	this	user	also	doesn't
								#	appear	in	the	/var/lib/patchman/plugin	file,	and	the	button	should	not	be	available
								#	to	them.
								pass
else:
				#	Unknown	error,	inspect	result	for	more	information.
				pass

file:///home/jelmer.verkleij/CLionProjects/patchman2-client/doc/.tmp.html#python-1

